/l _l_Ail 2 i
Ya(0, p) =— [—Prj"(0 3-_—(——__3 :
(0, p) ,(2 f()) Al [Prf"(O)) p (A4)
It is interesting to note that by setting p = 0 in (A4) we obtain

oo e S
3

This result agrees well with the first term of the expansion (A2), according to which

. 3 (Prf (0) \¥/3

yo(o)=_____(__f_i.)_ :
(1/3) 6
Thus, for moderate Pr (1 £ Pr << «) Eq. (A4) can be used for all p.
As p > = (|p] > ['/2Pr £"(0)]2/?) we find Y. (0, p)~ vp, while for n << 2|p|/Pr £"(0) we

have Y(n, p) = exp(—/pn). These equations correspond to the case of pure heat conduction.
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HEAT PROPAGATION BY HEAT CONDUCTION IN ACTIVE LINEAR MEDIA
L. S. Eleinikova UuDC 536.2.01

A method to use the matrix A-parameter method [1] to solve linear heat-conduction
problems in active media is proposed.

The system of differential equations describing the temperature and heat flux distribu-
tion in an inhomogeneous heat line (IHL) within which distributed heat and temperature sources
act has the form [1].

ot . dq
=-—-Rqg—] —— 4+ E, (1)
or 10 ot +
dq ot
——ar— = — lt—C +P. (2)

Equations (1)-(2) form asystem of so-called telegraph equations in which the effect of
the internal distributed sources is taken into account. The case when the distributed tem-
perature sources (E) and the distributed heat sources (P) are independent, i.e., are depen-
dent on neither the temperature nor the heat flux, but at the same time can be given as func-
tions of the coordinates or time, has been examined earlier [1]. It is shown there how a
problem with given initial conditions reduces to a problem with independent heat sources.

In this paper the case when the distributed sources of both E and P depend linearly on the
temperature or on the heat flux (or on their time rate of change) is examined.

Let us consider the following variants:
la) E
1b) E

R74q(r, 1) are the distributed temperature sources proportional to the heat flux;

I749q(r, 1)/91T are the distributed temperature sources proportional to the time

A. V. Lykov Institute of Heat and Mass Transfer, Minsk. Translated from Inzhenerno-
Fizicheskii Zhurnal, Vol. 37, No. 4, pp. 739-743, October, 1979. Original article submitted
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rate of change of the heat flux;

2) E = k74t(r, 1) are the distributed temperature sources proportional to the tempera-
ture;

3a) P = gz4t(r, 1) are the distributed heat sources proportional to the temperature;

3b) P = cz+3t(r, T)/9r are the distributed heat sources proportional to the time rate
of change of the temperature;

4) P = 174q(r, 1) are the distributed heat sources proportional to the heat flux.

Here R74+I74ky4, g74c74ly4 are proportionality factors. We shall henceforth speak of
the distributed sources of the type (1-3) and (2—4) and, forbrevity, of the heat lines (1-3)
and (2-4).

Let us consider the heat lines (1-3). 1In this case the system of linear differential
equations (1) and (2) can be represented in the expanded form

dq ot ot N
o —g t+gl —C ) 5 +ec,. " (&;— g Jt—(e;—¢p) e —g,t—c) a0 (4)

where Rf = Ry — Ryys If =17 =174 g% = g7 — 8743 cf = C7 — Cl4e

When no sources but sinks, act in the body, the plus sign in front of the coefficients
with the subscript + is replaced by a minus. The coefficients marked with an asterisk have
the meaning of effective parameters. As is seen from (3) and (4), taking account of the ac~-
tion of the dependent sources of type (143) results only in a diminution of the differential-
equation coefficients up to obtaining negative values. Therefore, the usual methods used in
the analysis of passive heat lines [1] are applicable to the computation of active heat lines
of the type (1-3). For both passive and active heat lines (1-3), inhomogeneous in the gen-
eral case, the reciprocity principle in the coordinates is satisfied.

A thermal system with the sources (1-3) can turn out to be unstable. Thus, let us ex-
amine the system function y,; = qlltlltz_o for a homogeneous heat line (HHL) (1-~3). Let the
physical parameters of the body be RZ Clos 870- The singularity of the active HHL (1-3)

H]

under consideration is that both g o and R% can have a negative sign. As follows from an
analysis of the system function vy,;, a change in the sign of the parameters gzo to the nega-~
tive results in a shift of its zeroes and poles to the right, and for the RZ° to inversion of
its zeroes and poles from the negative to the positive half plane. The system will be stable
1n the mode under con51der%tlon upon cgmpllance with the conditions RZo > 0 and gjo > 0 or
RZ° >0 "and gzo < 0, but ]gzo] < w?fr? R7o.

The stability of other problems for both the HHL and the IHL .(1-3) can be investigated
in an analogous manner,

Heat Lipes (2-4), 1In this case the system of two partial differential equations describ-
ing the process of heat transfer by heat conduction will have the form
L (RO RO+ kO, (%)
o ot
or —'gl(r)t_"cz(r)_é';—)—*'lz+(r)q' (6)

After executing a Laplace transformation of the equations presentedabove with zero initial
conditions taken into account, we have

at - - (N
L T+ O,
‘;‘Z = —y, OF + 1, ()%, (8)
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where z7(r) = Rz(r) + sIz(r); yz(r) = g7(r) + scy(r).

For a homogeneous heat line (HHL) [o(r) = const and the coefficients z7o, Y70, Klo4,
l7o4 are independent of the coordinates and are constants] the following heat conduction
equation in Laplace transforms 1is derived on the basis of (5) and (6):

dzt
Tdrt (kl°++ll°") df —(Zloylo—klole)t =0. (9)

The differential equation in Laplace transforms for the initial-heat-conduction func-
tion yin = q(r, s)/t(r, s), obtained on the basis of (7) and (8), has the form

'iU
- =% i~n_(kl°+(')_ll°+(r )Y in* (10)

y, )+

Let us examine the method to obtain the A-parameter matrix [1l] for the inhomogeneous
heat line {(IHL) (2-4). 1t is known that a differential equation formed for the A-parameter
matrix has the form

'—fr— LAP) = — [AONXOL (11)

where the matrix [X(r)] can be composed on the basis of the system of differential equations
(7) and (8) written in the matrix form

:, [§]=Ix(r)l[g=[k_“;?(,) :(l,§r) Hg—] (12)

(X =] 280 Xw(’)] - [kz A0 —zz(')} .
L Xaulr)  Xaor) —y(r} 1,.()
Solving the matrix equation (11) presented, the A-parameter matrix can be obtained in

the general case for an inhomogeneous active heat line (2-4) 1in analytic form. 1In the IHL
(2-4) case when the matrix elements [x] are constants (independent of the coordinate r), i.e.,

[X]—[k“’* —z“J
’—ylo Zlo+

i.e.,

(13)

the solution of the matrix differential equation is written at once:

(4] = exp {[FIr), (14)
where
(Fl=—{X]= {“‘kim zzo].
Y0 _llo-(-
Therefore

€xp [ —’;- (k zo++ 1104,) r] Ch(?f)-——-

-
shyr)
X

cD

[Alz[AB}___

1
Yroexp {-—?kzof*"z oJ’]

al

1
2;0eXp [—-— 5 (kyost o) 1
L

~ 1 sh(yr)
X exp [— o (k'lo T e ] ch(yr)— -2— (l1o:—%104) }

- —(k lo+ l')+)

] sh(yr)
¥ (15)

—(k _ +1 :
b )
where v = V. (Kjot — Ljog)2 + 270¥Zo, from which it follows that AD — BC —e !¢ 1™

We represent the solution (11) as a power series in s:

(4] = [A B} — E— {IX(-)drit j(]’[xqz)]drz) (Xt dry — [( (] (XCldry) (Xeal dra) X(OMr+.. (16)
CcD ) AV, , 8 o

On the basis of (16), for an active HHL (2-4)
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' r 3 ¢
A=1—kjor+ -2—1 {k§°++ Zl_o!/lo} - é"‘ {kli++zzoy'zo(llo++2kl o+)} + ey a7

rz r3 1 g 2
B = Zlor —_ E;‘ {Z.Lo(kl o++li0+)} + 'é"‘ {yl-ozlza+320(k'l"_°+‘i‘ll 0+k'lo++lzo$)} ey (18)
€ =ty — L {roltyontlion) | = L2112 e o o+, )] — 19
=Hhd — 5 {yl TR MR i At L Tog){ (19)
A A (
D=l—hor+ o {ll o z,oy,o} o {z,a++z,oyl_o(k-loﬁzzlM)} + o 20)
and for an active inhomogeneous heat line IHL (2-4)
r rr ror
A = 1 ‘qu_(ﬁ,)dﬁ—l—j‘{ {kl_‘—(rz)drz} kzq_(r‘)dfl + Y{y Zl (rz)drz}yl(rl)dri—*-..., (21)
0 §d 0 00
r ror rry
B = [2,(r)dri— [{ [y u(ro)dra) zyriddrs — [ { | 2(radrally (rddret. (22)
. i ] 00
C = s'yz(rﬂ)drl . “{ s.yl_(rz)dfz } kl+(f1) dff—— y{ S.l“_(fz)dfz}yz(f‘)dfi'"'r..., (23)
o 00 00
D=1— § I +(r1)dr1+§{ j vy (radra) 2 (ri)dry + 0\ { é L {radra) 1 (rddr— ... (26

The desired transfer function of the active thermal object [with the sources (2-4)] can
be written on the basis of the A-parameter matrix for given boundary conditions, its stabil=
ity can be determined, and the possible stable modes of a distributed gain in temperature or
in heat flux can also be analyzed.

Heat lines with the sources (2-4) are irreversible in the coordinate. Any thermal four-
pole is considered reversible in the coordinate if

det[A] = AD —-BC = 1. (25)
But from the Jacobi identity _
l/(det[A])Eexp[ f Sp[X(r)]dr:exp[ j'(X“(r)-{-Xzz(r))er , (26)
6 9

it follows that det[A] = 1 if and only if 5’(X,,(r)+xzz(r))dr=o.
1]

Consequently, it can be stated that in the general case both the IHL and HHL will be
irreversible in the coordinate if a distributed heat source of the type (2) and (or) (4) acts
within them. Heat lines with sources (2-4) will be reversible in the coordinate only in the

r r

.particular case when the condition {kgdrddrr+svldrodn==0 is satisfied for the IHL (2-4), and

kZo+ + ZZQ+ = (J for the HHL (2—4).
NOTATION

r, coordinate; T, time; t, temperature; q, heat flux; o(r), cross-sectional area in the
heat propagation direction; Rz, linear thermal resistance; c¢7, linear specific heat; g7z,
linear heat conduction; and I7, linear thermal inertia.
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